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1.0 INTRODUCTION

The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is
intended to support many analysis phases, from early interplanetary feasibility
studies through spacecraft development and operations. The IPOST output

provides information for sizing and understanding mission impacts related to
propulsion, guidance, communications, sensor/actuators, payload, and other
dynamic and geometric environments.

Much of the overall architecture for IPOST has been derived from the Program to
Optimize Simulated Trajectories (POST) (Reference 1-1). Indeed certain POST

parameters and capabilities have been incorporated into IPOST to aid in POST-
IPOST user compatibility. IPOST has extended trajectory capabilities to target
planets and other celestial bodies with intermediate and velocity correction
maneuvers. IPOST capabilities and limitations are summarized in Table 1-1.



FEATURE
Optimization method
Optimization algorithm
Optimization
parameter*
Maximum controls
Control parameters*

Maximum targets
_Target parameters*

Targeting method
:Sensitivity matrix

Maximum events

Event criteria*
_]vent activities

Maximum maneuvers/

subproblems

Trajectory propagation
Planetary bodies

Ephemeris
Trajectory
perturbations

Input/Output frames
* User selectable

CAPABILITY

Explicit (Master/subproblems), Implicit (collocation)
NPSOL

AV magnitude, mass, time, . . .

25 (Master), 45 (subproblems)_ 1700 (collocation)
Values of event criteria, AV, arrival conditions, thrust,

25 (Master), 45 (subproblems), 1700 (collocation)

Time, position, velocity, orbital conditions_... ....
NPSOL, Newton-Raphson r special Onestep
Finite differencing, analytic for special interplanetary

targeting
100

Time_ distance_ speed, closest approach_ . . .
Info, impulsive AV, launch, orbit insertion, mass

jettison
15

Conic_ Onestep, Multiconic_ Encke, Cowell_ implicit
Sun, nine planets, Earth's moon, any user-defined
bodies

Analytic, precision (JPL)
Central body, perturbing bodies, radiation pressure,

J2_ aerodynamics, thrust
Ecliptic or planet equator, Mean 1950 or Mean 2000

Table 1- 1. IPOST Features/Capabilities

IPOST, along with members of its family, such as POST and IPREP, can analyze
and support almost every activity associated with space exploration.

IPOST is event driven. That is, the user defines a sequence of events which are
executed in the simulation process. The events can be triggered by different

criteria, such as absolute or relative time, distance from a body, or propellant
consumption. At the event times, various activities can be initiated or
terminated, such as employing a different thrust steering law, changing
trajectory propagators or propagation step size, performing an impulsive delta
velocity maneuver or jettisoning a probe or stage.

The time period between two contiguous events is called a phase. Trajectory
propagation takes place in each phase. Five types of propagators are available
(listed in order of increasing accuracy and decreasing computational speed):
Conic, Onestep, Multiconic, Encke, Cowell. Propagator selection depends upon
user needs, such as simple fast simulations for parametric feasibility analysis, or

precision detailed trajectories to support subsystem design.
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IPOST can run a single trajectory simulation or it can run multiple simulations.
For multiple simulations, one can run a parametric scan and/or an optimization
mode. The search mode will vary one parameter, such as planetary arrival time,
over a specified interval and increment size, and perform a simulation (or
optimization) for each search parameter value.

The optimization mode will optimize a user cost/objective function, such as
maximum mass that can be placed in a desired orbit, subject to user-specified
constraints. The constraint variables, such as periapsis altitude or orbital
inclination, are called dependent variables or target parameters. The parameters
which are free to vary, such as maneuver delta velocity (AV), are called
independent variables or control parameters. As part of, or instead of,
optimization, trajectory targeting can be performed. In this case, there is no cost
function and the IPOST problem reduces to finding a set of control parameter
values that meet specified target parameter conditions.

Generalized targeting and optimization uses the Stanford NPSOL algorithm. For
certain types of problems, a trajectory decomposition method is available. There
is a master optimization process which requires that the trajectory be divided into
legs or sub-problems. Each subproblem is an optimization problem in itself,
containing controls, constraints and an (optional) objective function. A special
application of decomposition is the Interplanetary Targeting and Optimization
Option (ITOO). This technique uses analytical partials generated during nominal
trajectory propagation to determine minimum AV (or mass) trajectories, usually
for gravity assist (swingby) missions.
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In addition to the classic method of explicit optimization, there exists an option to
perform implicit optimization using the collocation method. In this case, each
phase is divided into independent segments which are allowed to vary subject to
intersegment continuity and the equations of motion. Optimization using
collocation is less sensitive to faulty initial guesses, but requires much greater CP
time than explicit optimization to achieve the same level of accuracy.

IPOST input is via three namelists: STOP, $TRAJ and STAB. STOP contains a
description of the targeting and optimization problem. It must be input first.
$TRAJ contains data that describes each mission event/phase. It must follow
STOP, and there must be one $TRAJ for each event. STAB is used to input
tabular data such as thrust vs. time or drag coefficient vs. mach number and
angle of attack. Input and output units are metric.
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2.0 COORDINATE SYSTEMS

There are many types of coordinate systems used in mission analysis

applications. IPOST provides a number of systems to allow the user a maximum

amount of analysis insight and flexibility.

2.1 INERTIAL ECLIPTIC SYSTEM

This system is used during heliocentric (sun-centered) interplanetary flight,

although it is sometimes used as a fixed reference frame for the entire mission.

Center of system

Primary plane
X - axis

- the sun, planetary bodies, or

planetary satellites
- Earth ecliptic

- Earth vernal equinox direction

z
e

Y

o

first

day of

winter

vernal equinox

direction,

first day of autumn

x

o

Figure 2 - 1. The inertial ecliptic coordinate system.
(The center can also be at any of the planetary bodies and satellites)
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2.2 INERTIAL PLANETARY EOUATOR SYSTEM

This system is used during flight near a planetary body.

Center

Primary Plane
X - axis

planetary body
planetary equator
rotation of planetary vernal equinox
direction through right ascension
and declination angles of the
planetary pole vector.

Z

eq

X
eq

w

Y

eq

Figure 2 - 2. The planet equatorial coordinate system.
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2.3 UVW SYSTEM

This system is used for vehicles whose longitudinal axis or whose thrust axis is
along the velocity vector.

Center

Primary Plane
Primary axis (X)

S/C center of mass

orbital plane of S/C
cross product of S/C velocity U = V x
W direction and S/C angular
momentum direction

_U direction

_.)

v
V=

Ivl

--) .-.)

rxv
W-

Irxvl

U =VxW

Figure 2 - 3. The UVW Coordinate System.
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2.4 RTN SYSTEM

This system is used for vehicles whose longitudinal axis is along the local

vertical, such as gravity gradient stabilized s/c.

Center

Primary Plane
X - axis

- S/C center of mass

- orbital plane of S/C
- radius vector direction

N

angular momentum/
direction /

/

,t

spacecraft
orbit

R

radius direction

T

N x R direction

...-)

'-) r
R =

.-.) .-)

-_ rxv
N-

----)

Irxvl

T =NxR

Figure 2 - 4. The RTN Coordinate System.
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2.5 THE_ BODY FRAME COORDINATE SYSTEM

The body frame is used in conjunction with other reference frames to orient the

vehicle in celestial space, and to identify locations and orientations of vehicle

components, such as the primary thrust vector and antenna boresights.

Center

x b axis

z b axis

Yb axis

P

R

- S/C center of mass

- from center of mass through nose of S/C,

- from center of mass through bottom of S/C,

orthogonal to x
A A

- XbXZ b

- pitch

roll

Y yaw

Figure 2 - 5. The body coordinate system.
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2.6 THE B-PLANE

The B-plane coordinate frame is used for hyperbolic approach to, and departure
from, a celestial body. It is often the most numerically stable system for
describing planetary approach/departure conditions.

HYPERBOLIC PATH
OF SPACECRAFT

INCOMING

B-PLANE .]_ TO ASYMPTOTE

INCOMING "_
ASYMPTOTE

o _

TRAJECTORY PLANE

B = Impact Parameter (Vector from Planet Center to Aiming Point)

---) -._

0 = Orientation of B Relative to T

.-)

S = Parallel to Incoming Asymptote

T = Parallel to Reference Plane (Ecliptic Unless Otherwise

R =S xT

Figure 2 - 6. B-Plane Coordinate System

Specified)
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2.7 CONE-CLOCK

The cone-clock system is used for determining the orientation of vehicle sensors
and actuators. One application is to transform IPREP and QTOP thrust data into

IPOST usable thrust acceleration profiles.
Z

Y

i!iiiiiiiiiiiiiiiiii!iiiiiii!iiiiiiiiii

plane I to the ecliptic

Figure 2 - 7. Cone/Clock Coordinate System
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It can be seen from Figure 2 - 7 that to convert this vector to the heliocentric

ecliptic (h/e) system, two rotations must be made. First, a rotation about xcc by
the declination of the sun centered heliocentric ecliptic s/c vector, and then a
rotation about the new z to line up the x and y axes. From this new vector in the

h/e system, pitch and yaw can be calculated for the s/c orientation. This is input
to IPOST. Since the cone clock system is not an inertial system, even if the cone

and clock angles were fixed, the h/e acceleration vector would be continuously

changing. Therefore, IPREP will calculate, for the IPOST user, cubic polynomial

coefficients for yaw and pitch, as well as the acceleration magnitude, which can

be input to IPOST as well. These polynomials are time dependent and can be used
as controls in IPOST to "fine tune" trajectories due to modelling differences when

higher orders of accuracy are desired.

The orientation of the body system relative to one of the other systems is given

through rotations of the following Euler angles: roll, yaw, and pitch. These three

angles are defined by time dependent quadratics where

roll = _ = ¢1 + O2t + _3 t2 ,[2-1]

yaw - _g - _1 + _g2t + _g3t2 ,[2-2]

pitch = 0 = 01 + O2t + 03t2 ,[2-3]

The rotation matrices for body system to system for which roll, yaw, and pitch are

defined as:

cos0 cos_/ cos0 cos_ simg + sin0 sinO cos0 sinO simg + sin0 cos_]- simg cosO cos_g cosO sin_g /
sin0 cos_/ sin0 cosO sin_/- cos0 sinO sin0 sinO simg + cos0 cos@J

12



UVW system to planet equatorial system:

Ux Vx Wx1

RTN system to planet equatorial system:

R x T x Nx I

Since each of these matrices consists of orthogonal rotations, the inverse rotation

is merely the transpose of the matrix.
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3.0 ,CONIC PROPAGATORS

IPOST uses two classical propagators for two-body motion: GOODYR and
LAMBRT. Both propagators can handle elliptical (including multiple
revolutions) and hyperbolic orbits.

GOODYR computes a final cartesian state given an initial state and a time of
flight. The algorithm is based on Goodyear's method (Reference 3-1). The two-
body equations of motion are solved using a generalized eccentric anomaly and

generalized Kepler's equation. The final state is computed using f and g series.
The state transition matrix, and its inverse, are similarly computed.

LAMBRT computes the initial and final velocities given the initial and final
positions and a time of flight. This classical Lambert problem is solved using a
method described in Reference 3-2. A generalized time of flight is iterated upon

using an independent parameter which also depends on known orbit quantities.
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4.0 ONESTEP (1STEP) PROPAGATOR

ONESTEP is a special adaptation of a generalized Multiconic method.
in JPL's PLATO, and described in References 4-1 and 4-2. The 1STEP
computational sequence is as follows (see also Figure 4-1).

It is used

(i) Start with an initial state at t i and a desired propagation final time tf.

There are other specifications needed, such as identifying the primary and
secondary bodies and the sphere of influence time (At).

(2) Estimate tp, the closest approach time at the secondary body, by Lagrangian
interpolation using 3 radii (at initial, final, and midpoint times) based on
primary body conic motion.

!

(3) Compute the new corrected closest approach time tp by conic propagation.

(4) If tp and tp' are within an acceptable tolerance, proceed to Step 5,
!

otherwise, replace tp with tp and go back to Step 2.

Sphere of Influence

6

I tp'At _ tp+At

Secondary Conic

Figure 4-1. ONESTEP flyby process
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(5) Propagate the initial state ti to tp using a two body conic (IPOST uses
GOODYR) centered about the primary body. This state is called the
(incoming) pseudostate. The propagation is from point 1 to point 2 in figure
A-1.

(6) Transform the pseudostate to the secondary body frame.

(7) Propagate the state from tp to tp - At (backward in time) assuming the

velocity at tp is constant. This is the rectilinear segment from point 2 to
point 3.

(8) Propagate the state at tp - At to tp + At using a two body conic (GOODYR)
centered about the secondary body.

(9) Propagate the state from tp + At backwards to tp assuming the velocity at tp
+ At is constant.

(10) Transform this (outgoing pseudostate) state to the primary body frame.t

(Ii) Propagate the pseudostate from tp to tf using a two body conic (GOODYR)
centered at the primary body. This is the final output state. The final

propagation is illustrated as the segment from point 5 to point 6 in Figure 4-
1.

There are also tests and modifications performed if the final time is before tp, or if

the initial time is after tp, or if the trajectory is totally outside of the secondary
body sphere of influence.

The targeting and optimization process usually requires a state transition matrix.
When 1STEP is used as a propagator, the state transition matrix can be computed
analytically. This is done by chaining a sequence of separate transition matrices,
all of which are computed analytically.

Off = OXi]OXi = (b65 (I)54 (I)43 (I)32 O21 , [4-1]

where (b65, (I)43, (I)21 are conic transition matrices generated as part of the

GOODYR conic propagation in Steps 11, 8, and 3, respectively. The constant
velocity transition matrices are

/IoI:t1(b54 = -(I)32 = , [4-2]
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5.0 MULTICONIC

The Multiconic propagator is similar to ONESTEP (Section 4) except that it takes

multiple steps to traverse a given time interval. This is done to avoid the

restrictive assumptions of ONESTEP, particularly having to always fly to closest

approach of the secondary body, and to accommodate additional perturbations.

The algorithm solves the three body problem following References 5-1, 5-2, 5-3. It

is non-directed, meaning that it does not presume a direction toward or away

from either the primary or secondary bodies. It is presumed that the secondary

body is in orbit about the primary body.

The algorithm is straightforward. We are interested in propagating a S/C state

[ RI, RI ] with respect to a primary body at time t I to another time, t F = t I + h in

the presence of a secondary body. The solution is

1 [5-I]
RF = RIPF+rISF'rI'I_I+_ (PF'Pl-h_)I)+_ aph 2 ,

I_F = IRIPF+/+ISF-/+I+ g (15F "151)+ hap , [5-2]

where Rip F = position vector of S/C with respect to primary body mapped with a

2 body conic from t I to t F.

rISF = position vector of S/C with respect to secondary body mapped with

a 2 body conic from t! to t F.

r I = position vector of S/C with respect to secondary body at t I.

PI = position vector of the secondary body with respect to the primary

body at t I.

p = gS/(gp+gs )

h = the delta time, t F - t I.

ap = the average perturbing acceleration over At.

The perturbing acceleration is the sum of the radiation pressure and the

gravitational perturbations from bodies other than the primary and secondary

bodies and other forces. Section 8 describes the perturbing acceleration models.

There is an optional variable stepsize algorithm,

17



h

IS 3R 2 _

o Rp SMIN _3
, [ 5-3]

where S o is a user input scale factor,

Rp = distance of S/C from primary body,

RSMIN = distance of S/C from closest secondary or perturbing body,

_tSMIN

The state transition matrix, ifneeded, is given by

q_ (_, tI) - q_2B (tF, tI) + _ (t_, ti)- Io hIi

= gravitational constant of closest secondary or perturbing body

, [5-4]

Where
P

2B is the two-body transition matrix from t I to t F about the primary body,

2B is the two-body transition matrix from t I to t F about the secondary body.

18



6.0 ENCKE PROPAGATOR

For more precision trajectory propagation, the Encke method has been adapted as
described in Reference 6-1. Instead of integrating the sum of all accelerations, as

in the Cowell method, this method integrates the difference between the true orbit

and an unperturbed conic orbit. Therefore, only the perturbations are integrated.

Since the perturbations change much more slowly than the actual state, a larger

step size can be utilized, making the method 3 to 10 times faster than the Cowell

method, with a reduction in roundoff error. The reference conic orbit is the orbit
which would result if all perturbing accelerations were removed at a particular

time.

The reference orbit is used for calculating the difference in total accelerations,

until this difference becomes too large. When this occurs, a process called

rectification occurs so that integration may continue without loss in accuracy.

This means that a new epoch is chosen, and a new reference orbit is calculated

which coincides with the true orbital path at that time.

The objective of the Encke method is to find an analytic expression for the
difference in the acceleration vectors of the true and the reference orbits. First, let

p_ denote the state vector of the S/C on the true orbit, and let _ denote the state of

the reference orbit at the same time. The equations of motion for these two states
are then

d2r¥> {'1"--> -"> [6-1]
dt 2 + r3 r = a p

and

d2_ l_

dt 2 + p3 P = 0 , [6-2]

...¢
where a is the vector sum of all perturbing accelerations. The difference vector

P

of the true to the reference orbit is then

---) ---)
r = r - p , [6-3]
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and the second derivative with respect to time is given as

..-),, ---),, --_,,
8 r = r . p [6-4]

For initial conditions, recall that at the epoch, to, the state of the true and

reference orbits are coincident, thus

r (t o) = -_(t o) and _r' (t o) = -_' (t o) [6-5]

By substituting equations [6-1] and [6-2] into equation [6-4], we arrive at the
analytic expression

8-+r '' =a_+ r 3 [6-6]

which can be rewritten as,

5--)r '' =a_+p3 I(1- P3/r-')r3 - 5 r--) ]
[6-7]

The above equation presents some numerical difficulties. The reason for using
this method instead of the Cowell method was to obtain more accuracy, through

less roundoff error. The expression

( 1 - p3 / r3), with its very nearly equal terms, is difficult to evaluate numerically,

requiring many more digits of accuracy.

In reference 6-1 the problem was treated as follows.

Let

p3 1 - (1 + q) 3/2
-f(q) = 1- r3 =

[6-8]

where
---)

(52-2 r-_ ). 5 r

q- r 2
[6-9]

and

3 + 3q + q2
f(q) = q

1 + (1 + q)3/2
[6-10]

Then, equation (6) becomes

8 r = -p3 f(q)_+5 + ap
[6-11]

2O



which removes the numerical problem, and is the equation integrated in the
Encke method.

The Encke method reduces the number of integration steps needed on a given

interval since 8 _ changes much more slowly than r. If the acceleration due to

the perturbations approaches that of the central body term, or if 8 _ / _ does not
remain small, the advantages of the method diminish rapidly. As the

perturbations become quite large, then it is possible the reference parameters
should be changed since the perturbations are becoming primary, or the Cowell

method should be employed. In the case that 8 _ / _ has become large, the

reference orbit more than likely needs to be rectified.
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6.1 ENCKE STATE TRANSITION MATRIX FORMULATION

As an option in the Encke method, the state transition matrix, •, can also be
integrated along with the state.

From [6-1] we have

O_(t)
(I)_ -

_(to)
[6-12]

where _(t) is the state at time t, and _(to) is the state at the initial time, to.

When t = to, the matrix is a 6x6 identity matrix. The derivative of • is given as

where

O' = F • [6-13]

3_'(t)
F-

_(t)
[6-14]

-_' r is the accelerationIf _ is the radius vector, r is the velocity vector, and _"

vector, then

F

m m

_ _

[6-15]
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Therefore we have the 6x6 matrix

where

F= I
I

¢ = 3x3 null matrix,
I = 3x3 identity matrix,

[6-16]

3 r-_,,

B- 3_ ' and [6-17]

_r_,,
C - [6-18]

_r_,

For each set of perturbation equations, the matrices B and C are calculated, and
used to create the matrix F. Once F is calculated for all perturbations, 0' can then

be integrated along with the state.

Perturbations which are accounted for in the transition matrix computation

include perturbing bodies, J2, and atmospheric drag.

6.2 ]ENCKE VARIABLE TIME STEP FORMUIATION

The Encke method also has the option of a variable time step which is dependent
on the size of the perturbations. Reference 6-2 suggests that the time step should
be dependent on the B partition of the F matrix derived in the preceding section.

The time step for input to the numerical integrator (RUNGE4) is defined as

where
h=(I B1 12+iB2 i2+ I B3 12)'25*TOL/SPDY [6-19]

B 1 is the first vector column of B,

B 2 is the second vector column of B,

B 3 is the third vector column of B,
TOL is the error tolerance level, and

SPDY is the variable for seconds per day.
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7.0 COWELL PROPAGATOR

The Cowell method is the most straightforward of all the numerical trajectory

propagation methods which include perturbations. The application of the method
is simply to write the equations of motion of the studied object, including all
perturbations, and then to integrate them step-by-step numerically. The
equations of motion for a spacecraft would be

r_" + (_/r3)_ = a_ [7-1]

where ap is the vector sum of all the perturbative accelerations. This equation is
broken down, for numerical integration, into a set of first order vector component

equations.

X' --') --') ' "->= Vx Vx = apx - (_i/r3) x [7-2]

y, -") ---> ,= Vy Vy = apy - (p/r3) y [7-3]

, ---> ---> , __>
z = Vz Vz = apz " (_/r3)z [7-4]

Advantages of the Cowell method come from its simplicity of formulation and
implementation. The advantages are equally weighted, though, by a set of
disadvantages. When the acceleration forces are large (such as motion near a
large attracting body), decreasingly smaller time steps must be taken which
severely affect the speed at which the method operates. Also, when such small
steps are taken, there can be a large accumulation of roundoff error. Roundoff
error will also begin to accumulate in interplanetary flight if the step size taken is

quite small. This gives support to the use of the Encke and Multiconic methods
for interplanetary flight and for low perturbation trajectories. When the

perturbations become quite large though, the Cowell method must be utilized.
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8.0 PERTURBING ACCELERATIONS

Perturbing accelerations include radiation pressure, low and high thrust
propulsion, aerodynamics, gravitational nonsphericity of the central body and
perturbations resulting from multiple attracting bodies.
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8.1 RADIATION PRESSURE

Acceleration due to solar radiation pressure is modeled by

--) So CR., (-_SC r-*) --)a - ro • r,m
[8-1]

where

So

CR
m

---)
r

_sc

= Solar flux constant,

= Coefficient of reflectivity,

= Mass of S/C,

= Heliocentric radius unit vector,

= Effective area used to calculate radiation press

(orthogonal to body axes, transformed into the i
frame).

8.2 PROPULSION

There are three types of propulsion systems that are modeled: low thrust,
generalized, and blowdown. Low thrust propulsion accelerates ions that are
supplied through electrical power systems, nuclear or solar. Generalized systems
are traditional high thrust propulsion systems used in a variety of rocket
applications, from launch vehicles to S/C attitude control. Blowdown systems are
a relatively economical S/C propulsion system.

All three propulsion systems provide both acceleration and propellant mass flow
information to the propagators. The mass flow is integrated simultaneously with
the translational equations of motion, using the mass flow equations that are
applicable for each propulsion system.

The thrust direction is assumed to be fixed with respect to the body. The thrust
direction is given as a unit vector in the body frame.

Acceleration due to low thrust electric propulsion is modeled as

2 u TIP-_ [8-2]a -- u,
m g Isp

and the mass flow rate is given as

rh
ml_J

g Isp

where

u = Throttle level (normalized),

11 = Thruster efficiency,

g = 9.806 m/s,

26



Isp
---y
U

P

= Thruster specific impulse,

= Thrust direction,
= Electric power available to thruster.
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The available power for the thruster system is

( C1 C2 __) -PL(t-to)P = P0 1+_-+_-_-+-- e "PHK, [8-3]

where

P0

C1,C2 ,C3

PL

to
PHK

= Initial power, watts,

= Solar array efficiency factors (=0 for NEP),

= Reactor decay factor (=0 for SEP),

= Initial time,

= Housekeeping power for space vehicle, watts.

Two finite thrust models will be employed. The first is a generalized system
which can be a regulated pressure system in which a separate gas tank provides
constant pressure to the propellant tank, or a solid rocket. The generalized finite
thrust is modeled as

T=uTva c -AEP(h) ,

u Tva c

g Isp

T -_
.=- --a m u , [8-4]

where

Isp = Thruster specific impulse,

rh = Mass flowrate of propellant to thruster(s),
u = Throttle level (normalized),
---)
u = Thrust direction,
m = Mass of the S/C,

Tva c = Vacuum thrust of the engine(s), Newtons,

A E = Exit area, m 2,

P(h) = Atmospheric pressure at altitude, h.
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A blowdown system will also be modeled. A blowdown system uses one
pressurized tank partially filled with propellant. The system is modeled as

rn = u mmax,

[8-5]

I s_ - T / (_a g)
w_ere

To

mmax
U

---y
U =

m =

pf =
to =

Vo =
U1 =

7 =

= Initial thrust level, Newtons,

= Mass flowrate of propellant to thruster(s),

= Maximum mass flowrate,

Throttle level (normalized),

Thrust direction,
Mass of the S/C,
Propellant density,

Initial time,

Initial tank volume,

Ullage ratio,

Ratio of specific heats.

8.3 GRAVITATIONAL PERTURBATIONS

Disturbing body accelerations are modeled in the Multiconic, Cowell and Encke
propagators as

where

a = _ , [8-6]

i=l [ _i__ i3

Gravitational constant of the i th body,

Position vector of the i th body (from ephemeris),

Position vector of the space vehicle,

Number of perturbing bodies.

_ti =
-.--y
r i =

R =

n =

Gravitational potential for nonspherical J harmonics is modeled as
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where

L

re

= gravitational constant for the central body,

= planetocentric latitude,

= equatorial radius.

3O



Therefore, gravitational accelerations due to J2 in the planet centered frame are

given as

2

 Xre )ii z2)x" -Sx = " r5 J25 , [8-7]

_ y x" [8-8]v!

Y -Sx - x '

z" = = - r5 J2 3- 5 _-_ , [8-9]

8.4 AERODYNAMICS

Aerodynamic accelerations are composed of drag and lift, with no side force. The

drag and lift coefficients can range from constants to bivariant functions of mach

number and angle of attack.

The atmospheric model used in aerodynamic calculations can be either a simple

exponential density or pressure/temperature versus altitude. If the exponential

atmosphere model is selected, certain aerodynamic effects will not be included,
such as thrust back pressure and mach number variations.

Acceleration due to aerodynamic drag is modeled as

1 A _'
a =-_ CD _- p Va r [8-10]a'

where

CD

A

m

P

va

= drag coefficient,

= cross sectional area of S/C perpendicular to the

direction of motion

= S/C mass,

= atmospheric density at the altitude of the S/C,

...._ '

= I r a ] = speed of S/C relative to the

rotating atmosphere,
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where

!

r
a

r = inertial velocity in planet

equatorial system,
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and
0' = rotation rate of the planet.

Acceleration due to aerodynamic lift is modeled as

--, 1 A _,2 A,
a =_CL_ p v a n , [8-11]

where
CL
A I
n

= lift coefficient,

= unit vector in the lift direction.

As mentioned earlier, two types of atmospheric models are available for
calculation of the density at a given altitude. The first is a simple exponential
model where the density is

where

(-1/ah)(h - ho)
p = poe ,

PO

a h
h

ho

= base density,

= scale height,

= current altitude,
= base altitude.

Currently stored in Po, a h , and ho are the values for the Earth's atmosphere.

Also available is a more complex tabular atmospheric model which calculates, for

a specific altitude, atmospheric density, atmospheric pressure, molecular weight,
mach number, and molecular temperature. Stored tabular values are altitude,
molecular weight, molecular temperature, and pressure. These values are
interpolated to give the correct output values for density, pressure, weight, mach
number and temperature. As with the exponential atmosphere, the stored values
currently available are for the Earth.
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9.0 ANAI YTIC EPHEMERIS

The analytic ephemeris in IPOST is taken from MAPSEP (Reference 9-1). Nine
planets with respect to the sun are represented. Each planet is characterized by
six conic elements (a,e,i,co,_,M) in a heliocentric mean ecliptic 1950.0 frame of
reference. Each conic element is described by a third order polynomial in time.

For example, Mercury's inclination in radians is

i = .01222... + (-1.041...E-4)*T + (1.745...E-8)*T 2 + (0)*T3

where time (T) is measured in Julian centuries past 2000.0.

When the ephemeris routine (EPHEM) is called to compute the planet state

(position and velocity), the conic elements are evaluated via their time
polynomials. The conic elements are then transformed to cartesian space, and
the state vector is output.

Analytic planetary satellite ephemeris is treated similarly. For example, the
Earth's moon is described by six conic elements with respect to Earth, each of

which has four polynomial coefficients describing the respective element in time.
At any specified time, the lunar cartesian state is computed, and added to the
Earth cartesian state to provide the moon's state with respect to the primary body.
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10.0 PRECISION EPHEMERIS

Extremely accurate planetary and lunar positions and velocities are derived by
evaluating a file of Chebyshev polynomials calculated/tailored for a given mission
application. This is accomplished using multiple-day-arc Chebyshev polynomials
whose coefficients are derived by a pre-processor using ephemeris data supplied
by the Jet Propulsion Laboratory (JPL), Pasadena, California. These data files
contain positions and velocities referred to the rectangular equatorial coordinate
system of the mean equator and equinox of 2000 for the major solar bodies:
Mercury, Venus, Earth- Lunar barycenter, Mars, Jupiter, Saturn, Uranus,
Neptune, Pluto, and Earth's moon plus the nutation rates in longitude and
obliquity. This data was generated at JPL by weighted, least-squares estimation of

appropriate orbital models using source positions obtained on the basis of current
planetary theories.

Using the method of Reference 10-1, a solar/lunar/planetary (S/L/P) file of
Chebyshev polynomial coefficients are generated for the time period(s) of interest

for each mission application. For trades performed for given mission(s), these
files would be saved for later access to avoid recomputing the coefficients. In this
manner, Chebyshev polynomial representations will retain the accuracy of the

original JPL data while increasing computing efficiency by eliminating the need
to interpolate on the JPL ephemeris data tapes. The Chebyshev file accessed
during computations contains polynomial coefficients for each component of
position and velocity and for each element of the matrix that transforms from the

mean equator and equinox of date to the true of date coordinate system as required
for IPOST calculations. Also included in the file would be the coefficients for the

equation of equinoxes, AH, used to correct mean Greenwich sidereal time.

In conjunction with the ephemerides pre-processor, a file-read utility is required
to access the Chebyshev polynomials and to calculate the ephemerides for IPOST
or to compute them in the coordinate system(s) of choice for output.

35



11.0  PSOL

NPSOL is a sophisticated optimization package developed by Systems
Optimization Laboratory of Stanford University (References 11-1 and 11-2). It

---) --) ---)
minimizes a smooth cost function F( y, u ) where u are the control (independent)
parameters subject to upper and lower bound constraints on both the independent

---) ---) ---)
variables and on dependent functions, y ( u ). These y can be linear and/or
nonlinear functions, some of which may be target (dependent) variables.

NPSOL is a stand alone package which interfaces with IPOST by accepting current

trajectory values (the cost function F, the cost gradient -_ = 3F/Ou_, the cost Hessian

2, -") "--) --)H 3 2 F/3_ controls u, constraints _= y, and the sensitivities C -- 3 y/3 u ) and

returning the next iteration control parameters u which minimize the cost

function F(_). This process is iterated to convergence, eventually outputing the
----)

optimum u and the values for F and "_.

The NPSOL algorithm (Reference 8) uses major and minor iterations to solve the

targeting and optimization problem. In the major iterations NPSOL seeks a

significant decrease in the merit function along a direction of search _. NPSOL
defines the merit function as:

F(-)u) = 5". [ li * (ci (u-)) - si)] + 2 ._ [ri * (ci (u-_)- si) 2]
1 1

where F(_) is the objective function
li is the vector of lagrange multipliers
ci is the i-th constraint function
si is the set of slack variables used to handle inactive constraints and

ri is the penalty vector for constraint violations.

Therefore, during NPSOL operation, the problem becomes better targeted and
more optimized in a simultaneous fashion.
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In the minor iteration NPSOL seeks the search direction P for the major iteration
by minimizing the quadratic programming problem:

Q = g-_T --_ 1p + _-p'_T Hp ->,

subject to a set of constraints, where g is the gradient of F(_), and H is the quasi-

Newton approximation to the Hessian of the merit function.

Both PGA and NPSOL are gradient based algorithms. They require derivatives of

the objective function and of the constraints with respect to the control variables.
The former vector of derivatives is called the objective gradient and the latter
matrix of derivatives is called the Jacobian, or sensitivity, matrix. In addition,
NPSOL constructs a second derivative matrix or Hessian.

One of the keys to optimization success is a well conditioned Jacobian matrix.
Usually, this is formed by finite differencing. In IPOST, the finite difference
control perturbations can be input by the user or computed by NPSOL. If NPSOL
computes the perturbation size for each control parameter, the appropriate
perturbation is that control value which produces the most accurate partial
derivative for the control-constraint (or objective) combination, which is just above
the numerical noise threshold. It can use either forward or central differencing

techniques. Quite often about a third of the run is spent computing an accurate
Jacobian because many simulation passes, or function evaluations, are needed to

produce the finite difference perturbation. NPSOL also has the option of
"verifying" an input perturbation size by constructing and comparing a finite
differenced Jacobian.
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12.0 TRAJECTORY DECOMPOSITION

A complete, end-to-end mission analysis for complex interplanetary missions
with one or more intermediate flybys is not practical in one computational step.
The complexities arising from gravity-assist and velocity change maneuvers
present a formidable challenge to solve only one trajectory through the
deterministic boundary value problem. Inclusion of all perturbations required for
optimization and their subsequent cascade of multiple trajectory calculations
would expand the problem to an unmanageable scope. Decomposition of the
mission into tractable sub-problems has long been a viable alternative (Reference
12-1, 12-2).
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12.1 EXPLICIT OPTIMIZATION - MASTER/SUBPROBLEMS

Decomposition is the resolution of the mission into sub-problems which are
readily solved, followed by an iterative master level solution of approximate sub-
problem solutions. The problem is described as a series of events and trajectory
phases, specified by user input. The events can reflect physical happenings
(starting time, time of periapsis, impulsive velocity change) or be informational
events (time to record the state vector or a sphere-of-influence). Each trajectory
phase starts and ends on an event. Complex missions are decomposed by
partitioning the trajectory into subproblems of one or more phases. Sub-problems

usually mirror a natural grouping of trajectory phases - such as a planet to planet
leg.

Each subproblem is defined by a set of control (independent) parameters and a set
of target (constraint or dependent) parameters. The controls are varied such that
target conditions are met. This requires first generating a target sensitivity

matrix, or Jacobian, ususally by finite differencing. In IPOST there are two ways
to adjust the controls using the Jacobian matrix. One option is to employ a
Newton-Raphson technique to "invert" the Jacobian. This is done with a L-U
decomposition algorithm which does not require a full rank system, that is, the
nimber of controls and constraints do not have to be equal. The second option
employs NPSOL. NPSOL can be used to optimize a subproblem unique objective
function at the same time meeting constraints. An example of subproblem
controls would be midcourse AV, and subproblem constraints would be planetary
encounter conditions at a subsequent flyby. The master level problem supplies the
starting independent variable values to each subproblem leg and receives in turn
the targeted values.

The master problem, which represents the complete mission design, is the
summation of the individual sub-problems. It controls optimization and specifies
the individual sub-problem targets. The sub-problem solutions are relatively
small in dimension. The master problem iterates through the sub-problem
trajectory legs to optimize an overall target strategy in conjunction with the
NPSOL optimization program. NPSOL evaluates the total trajectory in terms of
target error and modifies the independent variables for the next master level pass.

12.2 IMPLICIT OPTIMIZATION- COLLOCATION

A more subtle form of decomposition is applied in the technique of collocation
(Ref. 12-3, 12-4). This reformulation of the optimization problem requires setting
up the trajectory as an implicit simulation where the trajectory is divided into
many "independent" segments.

Implicit simulation computes the vehicle state between two junction points, or
nodes. This trajectory segment can be a portion of a simulation phase or the
entire phase. At nodes between events, the vehicle state must be the same for
each side, that is, just prior to and just after the node. At nodes that correspond to
events, the states on each side may be different. This discontinuity would occur if
instantaneous event activities were specified, such as mass jettison or an
impulsive AV maneuver.
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The vehicle state is represented between nodes as Hermite, or cubic, polynomials.
Each state component corresponds to a single Hermite polynomial. To compute
the polynomial coefficients requires position, velocity, and acceleration (from
evaluating the equations of motion) at each node. Figure 12 - 1 describes the
methodology and compares it with explicit propagation.

In collocation, the states on each side of each node, that is, the pre- and post-node
states, are allowed to vary. These free states become additional control variables.

Additional constraints must also be introduced because the states have other
imposed conditions. For example, the state on each side of an event node is
related by the event activity. Thus, an additional constraint becomes the node
connectivity between pre and post states, particularly due to any state
discontinuity arising from a mission activity, such as an impulsive AV.

Another set of constraints is introduced because the state on each side of a node

which is internal to a simulation phase, or between events, must be the same. In
some collocation formulations, the zero state differences for these internal nodes
are introduced as constraints. However in IPOST, the state on each side of an

internal node is explicitly set equal to the state on the other side. This has the
effect of reducing the number of controls and constraints such that only a single
state at each internal node become control variables.

One other IPOST refinement eliminates the state differences of the first event

node by explicitly setting the post-event state equal to the pre-event state plus any
state discontinuity associated with activities in the first event. In theory, all
double states can be reduced to single states by this procedure, but this remains a
future modification.

There are other constraints introduced by collocation. These constraints involve

forcing the Hermite polynomials to meet the equations of motion at the mid-point
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(tc) of each segment. The constraints, called defects, (_) are formulated as:

_ = X (X,tc)- HP=0

x - [ x, "y, "z, x', y, _.', m ], the seven element vehicle state
derivatives

where _ _(X, tc ) = equations of motion evaluated at t c using Hermite polynomials

(x) evaluated at

4
XHp = analytic derivations of Hermite polynomials, e.g.,

if y=b 0 +blt + b2 t2 + b3t3

then_H P = b I + 2b 2 + 3b3t2

The net result of collocation is that for any reasonable simulation/optimization
problem there are hundreds more control and constraint parameters than in an
explicit simulation/optimization(see Figure 12 - 2). In the IPOST formulation, an
equal number of controls and constraints are added via collocation. For example,
if a classical problem has 10 controls and 6 constraints, and the simulation has 5
phases with 4 segments per phase, then the total number of controls and
constraints are :

Number of controls = 10 + nc * 7 = 192
Number of constraints = 6 + nc * 7 = 188

where nc = (number of segments per phase + 1) (number of phases) + 1
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:ontrols: _ = state

4

constraints: E = event state (dis)continuity

d - state derivative defect

_t_1_+ _ _t _t _, _+t i I i t i I -i
E d d E

event internal internal internal event
node node node node node

f

Figure 12 - 2. Controls and Constraints Introduced by Collocation

Although the dimensionality of the optimization problem has been greatly

increased, there are several compensating features to collocation which

ultimately expand its region of convergence. The first benefit is that each
segment is relatively independent of the others because of the free states at each

node. Thus, a change early in the mission is not amplified into extremely large,

and unpredictable, changes later in the mission, as in explicit

simulation/optimization.

Another collocation benefit is that most derivatives are analytic, and therefore

rapidly, and accurately, computed. The few derivatives that must be done by finite

differencing are of the "local" variety. That is, there is very little time mapping, at

most over a single segment, which makes the finite differenced partials relatively
stable and well-behaved.

Finally, the total Jacobian, although quite large, is a sparsely populated, banded,

matrix. There are many techniques for efficient generation and manipulation of

sparse matrices. In IPOST, the zero elements of the Jacobian are identified and

pre-set, thus eliminating the wasteful application of finite differencing by NPSOL.
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13.0 INTERPLANETARY TARGETING AND
OPTIMIZATION OPTION (ITOO)

_.-y

The optimization objective is defined as a function, F(u ), which is to be minimized

over some time interval, to to tf, where u is an m x 1 set of control parameters

(independent variables).

The targets are defined as a set of n x 1 constraint parameters (dependent
variables)

= (u, x(u), c ), [13-1]

where x (u), x_(t o) are state variables (position, velocity, and perhaps
--->

mass) and c is the array of constraint values on y.

....>

The general targeting and optimization technique is a recursive application of u

new = _uold + A_u, where a-_ depends on AT (a measure of how far away a target

is from its desired value or constraint boundary) and the gradients _F/_-_ and

.-> -..>y f0 u. The Au solution may also require past information on a_u, A_, and/or the

gradient matrices, plus numerous user-supplied weighting factors.

-.> --_, .-->'

The problem solution starts with an initial guess of u o and x o = x (t o). The

equations of motion are integrated from to to tf (or some user defined stopping

condition that defines tf). The A_ and F functions are evaluated. The cost and

constraint gradients are computed. A control correction, A_u, is computed and the

new u is formed. The new conditions, u and x o, are propagated to form a new

trajectory. This process is repeated until F is minimized (i.e., until _F/D_u = 0).

Assume that
L

F = _: ,wiYi 2, [13-2]
i=l

where L is the number of variables of interest, wi is a weighting factor, and Yi is

an unconstrained dependent variable and

= y t u, x }. [13-3]

From a truncated Taylor series expansion,
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[13-4]

This provides a direction of AT and an initial estimate of its magnitude. This
---)

technique has special applications that will be shown later. It presumes that y is
--) --)

"small" and that y and u are linearly related. These conditions are quite often
true in interplanetary situations.

-.-)
The local Jacobian at time t is defined as _-_(t)/_(t), with z representing various

trajectory parameters, such as B-plane parameters, and x_ the state parameters

(position and velocity). _ can be control or target variables. The local Jacobian is

computed by numerical differencing. Although explicit analytical partials exist
for many interplanetary parameters, future growth dictates the need for the more
generalized numerical differencing method.

There is a broad class of interplanetary problems which lends itself to be solved
using the methods of ITOO. Figure 13-1 illustrates tlfe situation. The initial and
final times are specified. There are N bodies that are flown past. An impulsive
trajectory correction maneuver is performed between each body. The final body
often contains terminal conditions, such as planetary injection or small body
rendezvous. Intermediate planets usually have constrained flyby conditions.

To_2 _] Pn

6 " o).,.<
P<, "i-1 __L /

- Ti+l_Tn

Pj+I

Figure 13-1. General Interplanetary Mission

Note that this geometry has applications beyond the transplanetary phases and
includes satellite tours, such as the Galilean satellite tours, "cycler" missions
that visit the same two bodies, such as Earth-Mars cyclers, and small body tours,
such as multiple asteroid missions.

The targeting/optimization problem decomposes into two stages. The first stage is

a simple targeting problem. The impulsive A V of each maneuver is computed

45



such that the following body's encounter conditions are met.

components of A v and three target variables (user selected).

There are three

The second stage contains the optimization. The function to be optimized is

identical to that discussed earlier. Here the dependent variables, y, are the

-_ u, are themaneuver A V s. The independent variables, or control parameters, "*

maneuver times, Ti, and the planetary encounter conditions, _, which are given

as

Po

T1

--->

P1

T.
u= l Y=

--->

Pj

T n
.-..>

k Pnj

/ _.> "_

AV 1

--)

AV 2

AV 1

AV
n

__.)

AVn+I_\

[13-_

and

n+l

__> ___> n+l ---> 12 i---Y]wi -'-> T --->• = AV i AV i .F(y,u))= _lWl I Yi
[13-6]

Here we note special requirements affecting the initial and final conditions• In

transplanetary applications, there is typically a launch planet, Po, whose

launch/escape conditions can constitute an additional set of control parameters•

Also, there can be one or more terminal maneuvers at the terminal body, such as

rendezvous or orbit capture, which must be included in the total cost function.

A reasonable upper bound for the number of bodies appears to be 15. This is
consistent with all missions currently being projected for this century. The

number of control variables is 4n+3 and the number of dependent variables is

3n+3. Hence, the maximum number of control and dependent parameters should

be 63 and 48, respectively• In reality, IPOST limits control and dependent

parameters to 45 each.

There are no constraints on the A_s because they are part of the cost function to be

minimized• A few words on cost function weighting are in order.

..->

If all the wis are unity, the cost function is simply the sum of squares of the Av

magnitudes. A more useful cost function might be the sum of the total Av
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magnitudes. This can be done by setting wi = 1/I A_. I. An even more useful
1

function would be the sum of the total propellant expended (which is equivalent to

maximizing delivered mass). This can be done by using the rocket equation,

miwi - 2 1-e [13-7]
I A_I

where mi is the S/C mass prior to AV, and Ci is the exhaust velocity and is given

by

Ci = goIsp i. [13-8]

There are, or can be, constraints imposed on the control variables. Typically, _Po is

constrained by launch vehicle conditions, such as C3 or declination. Maneuver

times are usually restricted from occurring near a planet so as not to interfere
with science data collection. Planetary encounter conditions are also constrained,
such as not allowing closest approach beneath the planet's surface (impact).

Thus, we have a cost function dependent solely on unconstrained dependent
variables, subject to constrained independent/control variables.

Whatever the optimization method, a necessary part is the gradients, DF/(_u_) and

_'_/D_u Because of the cost function formulation, the two gradients are related as
follows

--)

_F n+l -_ T _AVi

_ - 2 i___lWl A V i _u_ [13-9]

....._ ...._

We need only to compute _AVi/0 t{ and we have both cost and target gradients.

The computations are even more efficient if we make use of analytic partials.
Onestep, Multiconic and Encke propagators can produce analytic state transition
matrices as part of their trajectory propagation process.
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The state transition matrix is composed of four partitions,

(Di,i- 1 --

m m

1 1

--->

_i-1 _Vi-1

1 1

-_i-1 _Vi-1-

[13-10]

(bj-l,i-1, _ij-1, (bj,i,... are all output from the Onestep and Multiconic propagation
process. We also note that

(I)i, i-1 = _i, j-1 (Dj-1, i-1. [13-11]

The local Jacobian can also be easily computed, and made available as

[13-12]

Subsequent chaining can generate other needed partials by

___/=____i

°_" j _x-->.¢i'jJ

The first step of the targeting/optimization problem is targeting.

iterative scheme can be employed where

--') -"> 1 --'>
newA V.=oldAV.+-- AP.

1 1 ___. j
J

where

1

-->
c}P.

J

[13-13]

A simple

[13-14]

, [13-15]

and h_j is the error in the encounter conditions (desired minus actual) from the

--) ---)

last iteration. The partials, _ vj/O P j, should be updated for each iteration.

Once targeting of each leg has been completed, the second stage is minimization

of the cost function. Again, the chain rule can be applied. The results of 3A_/O_u

are summarized below.
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Define

and

=I "1

SvPo(i)-o_i[ T.,R1 i

.-.> --..>
DR. DR.

1 1

°RRlUJ = _ + ._+

ORi_ 1 OVid

SVRO(i)

-..-) ---)
av. _v.

1 1

oVRiU, = __, +
ORi. 1 OVid

-- SVRO(i)

SvR2(i) -SvRo(i) SRRI(i) - SvRl(i).

[13-16]

[13-17]

[13-18]

[13-19]

[13-20]
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---)
For the sensitivities ofAV. to maneuver times, Tk, where i=l,...,n+l and

1

k=l,...,n,
1) for k > i,

---)
aAV.

_Tk 1 = 0 [13-21]

which means that all planets beyond the i th target planet have no effect on aAV' i ;

2) fork=i,
--)

3AV.
---)

1 .SvRo(i) AVi " [13-22]aTi -

3) for k = i-1,

aAv.
--.>

' -SvR2(i) A V i-1 " [13-23]aTi-1 - '

4) for k £ i-2,
--->

aAv i [ i-1aT-k --SvR2(i) l-I SRRI(L)] h_ k .
L=k+l J

For illustration, the full expression for k = i-2 is written

aRi_lJ_-_.2 - _ i -_-- + -_-- -_--a R i-1 a v i-1

Ia_i a_ia_i-ll/ Ia_i-1 a_i-1

+ __ -%-- J -W--+ -_L_i__ aVi.laRi.lJ La_i.2 avi_ 2 R i-2J

AV
i-2"

[13-24]

[13-25]
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Similarly, we can compute the sensitivities of Av i

conditions Pk' where i=l,...,n+l and k=O,1,...,n,

to planetary encounter

1) fork>i,

1
--=0;

2) fork=i,

 AV.
1 _ SvPo(i ) ;

3) fork=i-l,

4) for k = i-2,

DAV. _Ri_ 1
1 = SVR2(i )--y ---y

DPi-2 bVi-2

SvPo(i-2)

5) for k < i-3,
----y

bAY.
1

OP
k

i-1
- SVR2(i) [ I] SRRI(L)]

[L=k+l J

-->
aR

k+l
SxrPo(k)

[13-26]

[13-27]

[13-28]

[13-29]

[13-301
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Again, for illustration, the full expression for k = i-3 is written

_A'_. (._i (_i _" _i-1 /
_..>'_ --_- + ' _ -

IPi-3 t IRi tI'_i-1 I_i-1  Ri,)

+ _V i 2 _Ri.2)

_-_ ---)

_Ri_ 2 _Vi. 3

--#

V i-3 _Pi-3

[13-31]

We have now computed all of the partials needed to construct _F/_-->u and _-_ Du_ .

Optimization may cause one or more of the planetary legs to become untargeted.

Thus, the targeting and optimization stages may have to be repeated until
satisfactory convergence and optimization is achieved. The methodology of two-

stage interplanetary targeting and optimization is consistent with the IPOST

trajectory decomposition capability.
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14.0 SPECIAL ONESTEP TARGETING

TARGIS is a restricted application of 1STEP which is a special adaptation of a

generalized Multiconic method. This specialized targeting scheme is suitable for

a restricted class of interplanetary problems. (See references 4-1 and 4-2 for
--->

restrictions.) An impulsive change in velocity ( A V ) is computed at a specified

maneuver time (To) to achieve target body relative conditions (targeting) at

periapsis. Target conditions which work well are radius of closest approach

(RCA), B-plane orbit angle (0), and time of closest approach (Tp). It basically

solves a two point boundary value problem (TPBV) between the pseudostate

position and desired target conditions (see Figure 14-1). In theory, this is more

robust than solving the TPBV between initial velocity and target conditions

because the nonlinear effects of the primary body propagation from initial state to
pseudostate are minimized.

pseudostate

I v
__ | closest approach

"_ sphere of influence _II,

% Rsoi'V soi __)E('rp)% (Tso i = Tp - AT)

%

secondary/

target body

primary body

Figure 14-1. Special ONESTEP targeting
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Define E as the target conditions at the desired time Tp. The target controls
currently implemented are listed in the User's Manual. A change in the
pseudostate position, R*, will affect E in two ways: directly and indirectly (through
V*).

_E=(.D _ D_la D_so i D_, _-> _p__ D_so i D_,_, D_o/ _

t_p D_so i D_, D-4R, + t_p I_soi O_, D_,D_o DR-_**) *

v J k. v 2
direct indirect

We can compute J = I_/D_ the Jacobian by finite differencing. Furthermore,
P

____E_

DX
soi

- Ops is the state transition matrix from Tsoi to Tp from GOODYR.

---y
_x

soi

[_ -IAT-
- Os* is the constant velocity transition matrix = I

----y
DR,

..-)
DX,

--)
_V,

0

0

- lower right 3X3 portion of _*o from GOODYR.

-1
= lower left 3X3 portion of 0% from GOODYR.

....)

_V, _o 0"_ I -

Ifwedefine A-0-- _ D_--:, then _-(J)(Osp) ( AAAT)
o DR,

The targeting procedure is as follows.

(1) oStart with initial primary body centered state x = V
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and desired secondary body centered end conditions Ed.

to Tp with respect to the primary body to obtain(2) Propagate X o

_= R, V, and _*o'q_*o"

(3) Change pseudostate to secondary body frame of reference, and propagate
back to Tsoi = Tp - AT where AT = secondary body sphere of influence,
with constant velocity, then propagate to Tp with respect to the

--)

secondary body to obtain x P and (I)ps.

(4)
__) ---)

Evaluate the actual target conditions, E a' from X p.

(5) If the target error AE = Ed - Ea meets desired tolerances, then exit

targeting (go to Step 11). Otherwise, continue targeting (go to Step
6).

..-.) ---)
(6) Compute the Jacobian, J = 0E/_X

P

(7) Form _/0_,, as expressed above.

---)
(9) The new R, = old_, + S AE.

---)

(10) Solve Lambert's problem from R 0 to R, with flight time ofTp - To •

This provides a new initial velocity v o" Go to Step 2 and continue

the targeting process.

(11) The total impulsive AV is the last Vo - original Vo •
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15.0 SPECIAI F.UNCTIONS

15.1 LAUNCH MANEUVERS

The launch maneuver sub-event in IPOST applies a maneuver from a parking

orbit to a hyperbolic escape orbit. Computed outputs from this special subroutine

are the new S/C mass (after escape burn), the AV applied to complete the required

maneuver, the burn duration, and the state of the S/C at periapsis of the
hyperbolic escape orbit.

-P-- semi-major axis of the hyperbolic orbit where V_ is the

a - "V2 -

magnitude of the outgoing asymptote vector of the hyperbolic orbit. Voo is either

input or is calculated from

A cos ]V_ = cos 5 sin
sin 5

where

C3 =

desired declination,
desired right ascension,
desired escape energy.
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If V_ is input, then

V 2

Periapsis radius Rp = hp + Rs

where

hp - circular park orbit altitude,
Rs = surface radius.

_/_ 2ab =Rp "Rpp

+ = tan'l(i--_): turn angle

A

A V XZ
oo

T--
A

IV xzl

A A A

R = TxV
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If i is input, then

A A A

B = coseT + sineR

A A A

Rp = -cosc_Vc¢ + sin@B

A A A

N = BxV

A A A

V = NxR
P P

bV_

Vp = R
P
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Outputs:

_p = Rp

LVpVp.J

Av-- vp--_R__

= escape state at periapsis

NOTE:

ENDNOTE.

where

If F/(m g) < .02, then a low thrust spiral out is assumed and

oo

- (AV/(g*Isp))
m E = moe

mo AV
At- F

Isp =

F =

g =

specific impulse

average thrust during maneuver

reference gravitational acceleration
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15.2 IMPUL_]TE MANEUVER

The impulse maneuver sub-event in IPOST applies a maneuver, such as a

midcourse correction, to the S/C state. Computed outputs from this subroutine

are the mass of the S/C after the maneuver, the burn duration, and the in and out

of plane AV angles.

where

These are calculated as follows:

AV = ]A_]

- (AV/(g*Isp))
m F = mo e

m F

mo

g

Isp =

= final S/C mass after the maneuver,

= initial S/C mass before the maneuver,

= surface gravitational acceleration of the earth,

specific impulse.

where

Am = m E -m O

mo AV
At- F = burn duration,

F = average thrust during maneuver.

A

Orbit normal N =

----)
A AV

AV-

RxV

[ RxV [

A A

= cos "1 (AV * N) gives 0 < _'<

.'. _ = _ -_ gives- _ < _ <

where

= out of plane AV angle
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A A A A

T = N x (AV x N)

A A A

a' = directed angle from V to T about N gives 0 < a' < 2_

Ifa'<_ thena=a'Ifa'>_ thena=a'-2_ )
gives - _ < a <

where a = in plane AV angle
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15.3 ORBITAL INSERTION

The orbital insertion maneuver sub-event in IPOST takes a S/C on a hyperbolic

flyby trajectory and performs a maneuver to insert it into an orbit about a planet.
Calculated outputs are total AV required for the maneuver, final mass after the
maneuver, total burn duration, state of the S/C at periapsis of the new orbit, and
the time from the current state to the final orbit periapsis. These are calculated
as follows:

Rph = a(1-e)

where

a = semi-major axis for the hyperbolic orbit,
e = eccentricity for the hyperbolic orbit,

Rph = radius of periapsis for the hyperbolic orbit.

Rp = hp + Rs

where

hp = desired periapsis altitude,
Rs = surface radius of the planet,

Rp = radius of periapsis of the desired orbit.
Ra = ha + Rs

where

ha = desired apoapsis altitude,

Ra = radius of apoapsis of the desired orbit.

Rph + Ra
al - 2

Ra + Rp
a2- 2

where

a I = semi-major axis of intermediate orbit after first AV,

a 2 = semi-major axis of the desired orbit.

Vph _] [2a-Rph]2_ aRph j
= velocity at hyperbolic periapsis

before the first maneuver,

Va 1 2_ 2a I - Rph-a I Rph
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before the first maneuver,



If iD

where

= desired inclination < 0, and Ra < Rph, then

AV1 = V + Val - 2 Vph Va I cos (iD - i)

i = inclination of the hyperbolic orbit.
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Otherwise,

where

AV 1 = Vph - Va 1

mo AV1
Atl - F

m 1 = moe "_g*Isp)

F - average thrust during the maneuver,

m 1 = mass after the first maneuver.

"k/ pa : a]Vpl = 2 alRa J
= velocity at apoapsis of transfer

before the second maneuver,

"k/VP2 = 2 g[ a2Ra j
= velocity at apoapsis of desired

after the second maneuver.

IfiD = desired inclination < 0, and Ra < Rph , then

AV2 = Vpl + Val - 2VplVa 1 cos (iD-i)

where

Otherwise,

i = inclination of the hyperbolic orbit.

AV 2 =Vpl "Va2

m 1 AV 2
At2 - F

m2 =mle _g*Isp)
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F = average thrust during the maneuver,

m 1 = mass after the first maneuver.

The transfer time, TF, from the hyperbolic periapsis to the desired orbit periapsis

is given by

The total AV is therefore given as

AV = AV1 + AV2

NOTE: If the value [ F / mog ] < .02 then the maneuver is a low thrust spiral in,
and therefore

AV = _] (_/Rp) - _/a)

TF = At = moAV / F

mf = moe

a 2 - Rp

- (AV/g*Isp)

If mean anomaly, M, is greater than zero, then M = -M,

tp = -M/n + TF
where

n -- _]_ /-a 3.
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Compute the final orbit state at periapsis, x ,
P

Convert orbital elements with M = 0, to position, r, and

velocity, _V.

R
P

=(Rp/Rph ) r

where

v
P

=(Vp/Vph ) v

Vp = _] 2_ (2a2 - Rp) / a2Rp)

Therefore

--_ p

Xp =

p/
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15.4 SPACECRAFT MASS

The N-stage mass properties model from POST has been adapted for IPOST. The

mass of the spacecraft (ms/c) after an event (positive side) is calculated from the

mass before the event (minus side) as

ms/c = ms/c " ( mJett + _'D mprop) - _'s/,m

where

mJett =

XD -

mprop =

_s =

Am -

mass to be jettisoned,

a factor to specify the fraction of propellant mass to be

dumped,

current (remaining) propellant mass

propellant use (scale) factor

change is propellant mass due to propulsive accelerations

(Section 8.2)

Finite thrust propulsion algorithms model low thrust, generalized thrust, and

blowdown systems. These models return a mass flow rate which is integrated to

obtain Dm using a simple Euler integration. Before each integration step the

propellant (mprop) is tested to determine if sufficient fuel exists for the next step.

Impulsive maneuvers (launch, impulse, and orbital insertion) directly change

ms/c (Sections 15.1, 15.2, 15.3, respectively).
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